2023 Consumer Confidence Report

Water System Name: **DEL REY CSD** Report Date: 2023

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2023 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Del Rey CSD a 888-2272 para asistirlo en español.

Type of water source(s) in use: Ground water

Name & general location of source(s): Wells 4,5, 6,7 are located within the service District. Well 3 is a standby well

which are also located within the District.

Drinking Water Source Assessment information: The wells are considered most vulnerable to the following activities associated with contaminants detected in the water supply: metal plating/finishing/fabricating, known contaminant plumes, Pesticide/fertilizer/petroleum storage & transfer areas, Automobile-gas stations, Underground storage tanks, decommissioned, inactive tanks. The sources are considered most vulnerable to the following activities not associated with any detected contaminant: Agricultural Drainage, Lumber processing and manufacturing, Septic systems, low density (<1/acre), Sewer collection systems, Wells,- agricultural/irrigation, Wood preserving/treating, Wood pulp/paper processing and mills, Metal plating/finishing/fabricating.

Time and place of regularly scheduled board meetings for public participation:

7PM 3rd Thursday each month at 10649 E. Morro Avenue, Del Rey CA

For more information, contact: Carlos Arias- District Manager Phone: (559)888-2272

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL):

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal

(MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

 $\boldsymbol{ppb}\!:$ parts per billion or micrograms per liter $(\mu g/L)$

ppt: parts per trillion or nanograms per liter (ng/L)

with their monitoring and reporting requirements, and water treatment requirements.

ppq: parts per quadrillion or picogram per liter (pg/L)pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA									
Microbiological Contaminants	Highest No. of Detections	MCL MCLG Typical Source of Bacteria							
E. Coli	0	0	(a)	0	Human and animal fecal waste				

(a)Routine and repeat samples are total coniform-positive and either is E. coli-positive or system fails to take repeat samples following E. Coli-positive routine sample or system fails to analyze total coliform-positive repeat samples for E-coli.

TABLE 1.A.-COMPLIANCE WITH TOTAL COLIFORM MCL BETWEEN JANUARY 1, 2023 & JUNE 30, 2023 (INCLUSIVE)

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	0	0	1 positive monthly sample (a)	0	Naturally present in the environment
Fecal Coliform and E.coli	0	0	0	None	Human and animal fecal waste

(a)For systems collecting fewer than 40 samples per month: two or more positively monthly samples is a violation of the total coliform MCL. For violation of the total coliform MCL, include potential adverse health effects, and actions taken by water system to address the violation.

	TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER									
Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant		
Lead (ppb)	7-29-21	10	ND	0	15	0.2	0	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits		
Copper (ppm)	7-29-21	10	ND	0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives		

TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS								
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	S MICH		Typical Source of Contaminant		
Sodium (ppm)	2023	10.20	9.4 – 11	none	none	Salt present in the water and is generally naturally occurring		
Hardness (ppm)	2023	34	32 – 36	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring		

TABLE 4 – Di	TABLE 4 – DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD								
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant			
Inorganic Contaminant	-	-	=	-	=				
Nitrate as N (ppm)	2023	.77	.36 – 1.9	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits			
Arsenic (ug/L)	2023	2.3	2.1 - 2.5	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes			
Synthetic Organic Contami	inant								
DBCP (ng/L)	2023	0.01	ND054	200	1.7	Banned nematocide that may still be present in soils due to runoff/leaching from former use on soybeans, cotton, vineyards, tomatoes, and tree fruit			
1,2,3 Trichloropropane (ug/l) WELL 04	2023	0	ND	0.005	0.0007	Discharge from industrial and agricultural chemical factories; leaching from hazardous			
1,2,3 Trichloropropane (ug/L) WELL 06	2023	0	ND	0.005	0.0007	waste sites; used as cleaning and maintenance solvent paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides.			
*1,2,3 Trichloropropane (ug/L) WELL 07	2023	0.0075	.00650087	0.005	0.0007	Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance			
*1,2,3 Trichloropropane (ug/l) Well 05- off line	2023	.036	.029042	0.005	0.0007	solvent paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides			

TABLE 5 – DET	TABLE 5 – DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD									
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant				
Specific Conductance (uS/cm)	2023	120	110 - 130	1600	None	Substances that form ions when in water; seawater influence				
Total Dissolved Solids (ppm)	2023	85.50	78 - 93	1000	None	Runoff/leaching from natural deposits				
Chloride (ppm)	2023	1.75	1.5 - 2	500	None	Runoff/leaching from natural deposits; seawater influence				
Sulfate (mg/L)	2023	3.2	3 – 3.4	500	None	Runoff leaching from natural deposits; industrial wastes				

TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS									
Chemical or Constituent (and reporting units)	Antitrofton Loval Haalth Ritagts Language								
Magnesium (mg/L)	2021	1.60	1.5 - 1.7	NA	NA				
Calcium (mg/L)	2023	11	10 - 12	NA	NA				

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Del Rey Community Services District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT									
Violation	Explanation	Duration	Actions Taken to Correct	Health Effects Language					
1,2,3 Trichloropropane	Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides.	On going	Plan to install GAC filters on Well # 7 first then Well #6	Some people who drink water containing 1.2.3 trichloropropane in excess of the MCL over many years may have an increased risk of getting cancer.					

For Water Systems Providing Groundwater as a Source of Drinking Water

TABLE 7- SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES									
Microbiological Contaminants (complete if fecal-indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant				
E. coli	0	2023	0	(0)	Human and animal fecal waste				
Enterococci	0	2023	TT	n/a	Human and animal fecal waste				
Coliphage	0	2023	TT	n/a	Human and animal fecal waste				